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Abstract— Understanding real-time train occupancy is a
critical problem for public transport management, especially
in the service disruption scenarios. To address this problem,
this paper proposes a public transport passenger assignment
method for estimating the time-dependent train occupancy
comprising of a three-step modelling approach. Firstly, we make
use of train station tap-on and tap-off information collected by
Automated Fare Collection systems to estimate the initial time-
dependent Origin-Destination matrix (OD) of the train network.
Secondly, we take advantage of real-time train scheduling data
to calibrate the initial OD matrix according to travel time,
transfer time and waiting times across train lines. Thirdly,
the calibrated OD matrix together with train scheduling data
are used to generate entire passenger travel trajectories from
origins to destinations including all path segments, by following
a probabilistic hybrid Markov-driven approach. Lastly, after
knowing all passenger trajectories, we further estimate the
passenger occupancy for every train in the entire network
in a given short time window. The results are applied over
the real Sydney train network in Australia, and showcase that
the proposed method can accurately quantify time-dependent
passenger flows at a station platform level of granularity.

Index Terms— train assignment, public transport, OD esti-
mation.

I. INTRODUCTION

Several large cities around the world rely on train, metro
or subway systems to accommodate the large travel demand
from continuously increasing population. To cite a few,
Transport for London has suffered a 70% increase in public
transport patronage over the last 20 years [2], the MRT
railways system in Hong Kong 56% [3], while the Sydney
Train Network in Australia has reached 377.1 million annual
patronage in 2019 [4] which represents a further 17.7%
since 2013 [5] raising the maintenance costs to almost
1.46 BilAUD due to extensive track line constructions and
integration with new Metro line to keep the pace with travel
demand. As a result of this increased demand, many rail
systems operate almost at maximum capacity during the peak
periods with passengers crowding on platforms and inducing
event more delays in train operations.

Therefore, estimating a real-time passenger loading for
trains across the entire networks represents a true challenge
and open research problems due to many factors which
can interfere such as: a) train line inter-connectivity, b)
stochastic technical disruptions, c) public events or d) badly
interconnected multi-modal public transport systems. The
problem is manifold and extends from planning perspective
to real-time train operations.
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A. Paper Contributions

The proposed method in this paper takes advantage of
real-time train scheduling data to calibrate an initial time-
dependent OD matrix which is generated based on train
station tap-on and tap-off automatic data collected. Further
on, the calibrated time-dependent OD matrix which repre-
sents the refined travel demand across the train network is
used to assign each individual passengers to the most likely
path from origin to destination, by taking into consideration
several factors such as travel time between stations, trans-
fer and waiting time. The final steps represents a hybrid
Markov modelling and probabilistic estimation of passenger
occupancy for every train in the entire train network in a
given time window. The entire methodology comprises of
three major steps which are further detailed in Section II and
applied to the Sydney train network case study detailed in
Section III. The current approach makes use of the following
data input: a) the network layout and connectivity between
train tracks, b) the timetable information: the scheduling
of train trips according a master timetable which includes
departures and arrival of each train trips between any stations
in the network and c) tap-on and tap-off information: the
numbers of passengers entering and existing train stations
collected by an Automated Fare Collection (AFC) system
provided in an aggregated hourly fashion.

The available information for modelling poses the follow-
ing challenges which we address in this paper:

1) the patronage numbers are aggregated for every 15-min
of time interval for protecting passenger privacy; the
exact tap-on and tap-off times, and the links between
tap-on and tap-off are unknown; this requires a robust
routing methodology for travel path generation;

2) there is an unknown association between tap-on and
tap-off records: as the data contains no information on
where specific passengers tap-on followed by a tap-off
in the network for protecting passenger privacy, the
OD matrix estimation becomes very challenging;

3) train stations currently have multiple platforms so
passengers once entered a train station can direct them-
selves towards any train line and board any train trip;
this becomes very challenging for large train stations
such as Central station with more than 30 platforms;

4) in-station transfer: passengers can take various transfer
options for travelling to the same destination and
currently no information is recorded when passengers
interchange at specific train stations to change their
trips and transfer between various segments of their
journey.



The results presented in Section III-A are based on the
main outputs of the methods which are summarized in: a)
the initial train demand comprising the assigned passengers
travelling between any two stations in the network, b) the re-
calibrated and final dynamic demand comprising passengers
between any OD pair regardless of their train trips by each
15-min time-interval, c) the dynamic number of passengers
waiting on each train station platform based on preferred
path choice and d) the number of passenger who alight from
a train trip and board to another train trip inside the same
train station (estimating the transfer passengers at each train
station). Finally, Section IV concludes this paper.

B. Related works

In the literature, various approaches have be undertaken
to tackle these challenges out of which we name a few of
them in the following. Authors in [6] proposed a probabilistic
passenger to train assignment model by matching the fare
transactions to the automatic vehicle location from tracking
system and taking into consideration the access/egress time.
However, the case study exemplification has been only
applied to few train stations without major interchanges in
between and would need a further a scalability analysis. In
our study we consider the possibility of passengers moving
between any platforms, and transferring between any cross-
ing stations.

The study presented in [7] developed a regression model
based on automatic fare card data and the distances between
origin and destination stations to decompose the gate-to-gate
journey time and estimate the location of passengers inside
the network. This is a similar approach to what we propose
in this paper, but our methodology considers both physical
distance and ideal travel times between train stations, and
also the real planned and operational travel times based on
the train scheduling data set.

A recent paper [8] focused on estimating the crowding
penalty in a discrete route choice frame-work, by considering
that: a) for single itineraries, the “delayed access time” as the
time between tapping-in and boarding, b) for transfer jour-
neys, the assignment was based on the delayed access time
distribution at the origin station and egress time distribution
at the destination station. This represents as well a simplified
approach but can face difficulties if several itineraries might
experience very similar delays/egress times.

[9] proposed a collaborative optimization for metro train
scheduling and train connections combined with passenger
flow control strategy applied to a single train line in Beijing
which does not contain any transfers. The authors proposed
a mixed integer non-linear programming model to realise
the trade-off among the utilization of trains, passenger flow
control strategy and the number of awaiting passengers at
platforms, however for transfers train changes the scalability
of the method would become a challenge.

[10] proposed an analysis of subway station capacity with
the use of queueing theory for building a network analytical
model and discrete-time Markov Chain (DTMC). The main
limitation here is application to a single train station with

a high number of decision variables when generalising the
approach. In our study, we consider hybrid-state Markov
chains which have both a continuous and discrete-time be-
haviour for modelling the transitions of passengers between
platforms, and this is presented as a third approach for
passenger assignment across across a larger interconnected
train network.

[11] proposed an event-driven model that involves three
types of events, i.e., departure events, arrival events, and
passenger arrival rates change events by considering walking
ans transfer times of passengers. They solve the non-linear
non-convex problem by using evolutionary algorithms (EVs)
applied to a case study area with only two transfer stations.
This is an interesting approach which might be bounded by
long computational times of the EVs.

[12] built a dynamic simulation model of passenger flow
distribution on schedule-based rail transit networks with train
delays, by considering the origin-to-destination matrices, the
passenger’s alternative choices (by applying a stochastic dy-
namic user equilibrium), waiting time and switching to other
transportation modes. While the approach can be used for
validation purposes of analytical train passenger assignment,
its application for fast real-time train network modelling can
represent a limitation.

As a future extension of passenger assignment modelling
approaches, mobile data can bring a solid benefit and this
was shown by [13] who conducted experiments in the Paris
Metro to assess the potential of using cellular phone data
to infer travel times, train loads, and OD flows. The train
trajectory and mobile phone trajectory events were linked.
However, there is currently very limited access to mobile
data and mapping it in high details for movements across
platforms can be quite problematic.

II. METHODOLOGY

The methodology of the current paper is split in three main
parts which represent the major contributions based on initial
data constraints and requirements. The area of our case study
analysis represents the city of Sydney, and the train network
for which we apply the current methodology is represented
in Fig. 1. In the rest of this paper we use the abbreviation
STM to denote the Sydney train metropolitan network.

A. Initial OD matrix estimation

First part of contributions consists in a systematic
modelling approach for estimating the initial Origin-to-
Destination matrices OD(Tr) containing the number of pas-
senger trips assigned between any pair of two train stations
in the network {Si,S j} i, j ∈ {1, ..,N} during a time period
Tr. All notations in use are provided in Table I. As stated
previously, the main challenge in this first estimation step
consists in the aggregated number of tap-on/tap-off numbers
available in blocks of 15-minute time interval during a
24-time period (mainly due to privacy concerns of public
transport users). The initial OD estimation methodology
comprises the following steps:



Fig. 1: Network layout of the Sydney train network.

TABLE I: Notations in use for initial OD estimation.

Variable Definition
N the total number of train stations in the network,
Si, i ∈ {1, ..,N} station ID,
di, j distance between stations i, j ∈ {1, ..,N},
D =

[
di, j
]

i, j∈{1,..,N} matrix of distances between any 2 stations i, j,
~DSi =

[
min(di, j)...max(di, j)

]
the vector of all distances from station i to any
station j in the network ordered from the closest
to the farthest station,

TT =
[
tti, j
]

i, j∈{1,..,N} matrix of travel time between any 2 stations i, j,
~T T Si =

[
min(tti, j)...max(tti, j)

]
the vector of all crescent travel times from station i to any
station j, using maximum speed of each train segment

N pSi
Ton

(t) total number of passengers entering station Si
at time t, regardless of stopping station

N pSi
To f f

(t) total number of passengers exiting station Si

at time t, regardless off departing station
~ri, j =

[
seg1

i, j, ...segK
i, j

]
the route trip between stations i, j

which contains several train segments segK
i, j ,

where K is the total number of train segments
between stations {i, j}

T d~ri, j the departure time of a route ~ri, j ,

~tt~ri, j =
[
tt1

i, j, ...tt
K
i, j

]
the travel time of each segment in a route trip ~ri, j

recorded when travelling between stations {i, j},
ETo f f (~ri, j) the estimated time off for a route trip ~ri, j ,
Tr the 15-min time interval during a 24-hour period

where r ∈ {1...96};
w~ri, j (Tr) the weight associated with a routing path between

stations i, j calculated at time interval Tr ,
OD(Tr) the Origin-Destination matrix containing the

number of assigned passengers between any pair of
train stations estimated at time Tr ,

N̂ p
Si ,S j
To f f−i

(Tr) total number of passengers exiting station S j

during time interval Tr after departure from Si

1) Given any two stations Si,S j in the STM net-
work, calculate the matrix of distances denoted D =
[di, j]i, j∈{1,..,N}, where by distance we refer to the phys-
ical distance in meters calculated between train stops.

2) For each of the train stations Si, calculate the vectors
of all distances between Si and any station S j in
the network ordered from the closest to the farthest
station ~DSi = [min(di, j)...max(di, j)]. This is essential
in determining the shortest path finding between the
station at later stage.

3) For each station Si, build random samples from the to-
tal number of entering/exiting passengers using aggre-
gated data sets detailed previously (denoted N pSi

Ton
(t),

N pSi
To f f

(t) respectively), at 1-min time-interval fre-
quency and batched as well in 15-min time interval
blocks. The final purpose is to able to assign/distribute
the entering number of passengers across all train

stations, by following an initial assignment method
based on route weighted detailed in steps 4-7 below.

4) Calculate and store all the possible paths between any
pair of two stations and rank them from shortest to
longest path based on their estimated end of trip time.
This translates in:

a) calculate all route trips ~ri, j =
[
seg1

i, j, ...segK
i, j

]
between

stations Si,S j, containing several train segments segK
i, j,

each having its own travel time denoted as ~tt i, j =[
tt1

i, j, ...tt
K
i, j

]
(calculated by using the maximum speed

defined by Sydney train network and the total distance
between origin and destination),

b) for each route trip between two stations, calculate the
estimated time-off, denoted ETo f f (~ri, j), where

ETo f f (~ri, j) = T d~ri, j + tti, j (1)

c) for each ETo f f (~ri, j), identify the 15-min time interval
in which the trip will finish, noted as Tr, where r ∈
{1...96} (as there are 4 ∗ 24 = 96 time intervals in a
day). For example, T1 represents the time interval from
12 : 00AM−00 : 15AM and T96 the time interval from
11 : 45PM− 12 : 00AM. An example of such ranking
and estimated time of arrival at this stage is provided
in Table II here below.

TABLE II: Routing and estimated time of arrival example.
Time Entries OD Route Estimated arrival time Allocated time interval
T d~ri, j N pSi

Ton
(t) Si−S j ~ri, j =

[
seg1

i, j, ...segK
i, j

]
ETo f f (~ri, j) = T d~ri, j + tti, j Tr = r, r ∈ {1, ..96}

07 : 01 120 S1−S2 ~r1,2 =
[
seg1

1,2,seg2
1,2,seg3

1,2

]
ETo f f (~r1,2) = 07 : 09(07 : 01+8′) AM Tr = 29, (07:00-07:15 AM)

07 : 01 200 S1−S3 ~r1,3 =
[
seg1

1,3,seg2
1,3

]
ETo f f (~r1,3) = 07 : 16(07 : 01+15′) AM Tr = 30, (07:15-07:30 AM)

... ... ... ... ...
07 : 01 450 S1−S250 ~r1,250 =

[
seg1

1,250, ...seg4
1,250

]
ETo f f (~r1,250) = 07 : 46(07 : 01+45′) AM Tr = 32, (07:45-08:00 AM)

07 : 01 60 S2−S1 ~r2,1 =
[
seg1

2,1,seg2
2,1

]
ETo f f (~r2,1) = 07 : 07(07 : 01+6′) AM Tr = 29, (07:00-07:15 AM)

... ... ... ... ...
07 : 01 610 S2−S250 ~r2,250 =

[
seg1

2,1..seg6
2,250

]
ETo f f (~r2,250) = 08 : 01(07 : 01+60′) AM Tr = 33, (08:00-08:15 AM)

... ... ... ... ...

11 : 01 PM 20 S250−S1 ~r250,1 =
[
seg1

250,1, ...seg3
250,1

]
ETo f f (~r250,1) = 11 : 23(11 : 01+22′) PM Tr = 94, (11:15-11:30 PM)

... ... ... ... ...
11 : 01 PM 85 S250−S249 ~r250,249 =

[
seg1

250,249, ...seg8
250,249

]
ETo f f (~r250,249) = 11 : 48(11 : 01+47′) PM Tr = 96, (11:45PM-12:00AM)

5) By using initial aggregated Tap-off information sampled over
15-min time intervals, we calculate the total number of
passengers ending their trips in each of the Tr time interval,
at any station of the STM network (SSi

to f f (Tr)) by using:

SSi
to f f (Tr) =

N

∑
i=1

N pSi
To f f

(Tr) (2)

We make the observation that due to the length and
departure-time of each trip, the ending of the trips in each Tr
produces an optimised and reduced data set of all possible
tap-off journeys which is different than if we would have
considered all passengers exiting the train network stations
in each 15-min time interval.

6) For each route ending in a specific time interval Tr, we further
calculate the weight associated with a routing path between
stations Si,S j at time interval Tr, which we denote w~ri, j (Tr),
as follows:

w~ri, j (Tr) =
N pSi

To f f
(Tr)

SSi
to f f (Tr)

(3)

which satisfies the condition that:

∑w~ri, j (Tr) = 1 (4)

7) By using Eq. 3, we finally calculate the initial assigned
number of passengers tapping-off per time-interval as an
expression of the total number of passenger entering the
stations and their associated exiting weights:

N pSi,S j
To f f−i

(Tr) = w~ri, j (Tr)×N pSi,
Ton

(T d~ri, j ) (5)



8) Calculate the error between the total assigned number of
passengers across all stations, per each time-interval against
the original sampled passengers exiting the stations at each
time interval and re-iterate steps 1-7 if the error is more than
a maximum error threshold which we establish at 15%:

Err(Si) =

∣∣∣∣∣SSi
to f f (Tr)−

N

∑
j=1

N pSi,S j
To f f−i

(Tr)

∣∣∣∣∣ (6)

9) Results obtained in Eq. 5 are finally used to obtain the OD
matrix of assigned number of passengers departing from any
station as origin in the network; this is a time-dependent
OD matrix and we estimate 96 matrices per each 24-h time
interval as expressed below:

OD(Tr) =
[
N pSi,S j

To f f
(Tr)

]
i, j∈{1,..,N}

(7)

This step ends the initial assignment and represents the
entry point of more complex passenger assignment procedure
detailed in the following two subsections.

B. Recalibration of passenger OD assignment

The second part of the current contributions translates
into a recalibration of the initial OD matrices by taking
into consideration more complex information of the train
trip scheduling across the STM network, coupled together
with planned real timetable information obtained from API
connection to GTFS data stream on a daily basis.

TABLE III: Notations in use for OD recalibration.

Variable Definition
ttGT

i, j the GTFS total travel time recorded between stations {Si,S j},
~T T

GT
Si

matrix of GTFS travel times recorded between any 2 stations {Si,S j},
T F~ri, j the recorded transfer time along a route between {Si,S j},
Str

k transfer station ID,
WT~ri, j the waiting time before boarding a train,
WT~ri, j waiting travel time for a route ~ri, j
T F~ri, j transfer time between segments for a route ~ri, j

EA
To f f

(~ri, j) expected time-off of a train (route) trip using WT~ri, j and ttGT
i, j

EB
To f f

(~ri, j) expected time-off of a train (route) trip using WT~ri, j , ttGT
i, j and T F~ri, j .

SSi
to f f−c(Tr) the total number of recalibrated passengers ending their trip at Si

w~ri, j (TrA) the recalibrated weight of a route recorded in TrA

N p
Si ,S j
To f f−c

(Tr) the recalibrated number of assigned passengers tapping-off at each Tr

ODc(Tr−c) the recalibrated matrix of passenger trips

The following steps are currently proposed and use the
notations provided in Table III:

1) Given any two stations in the STM network, extract the
total number of passengers initially assigned in the OD
matrix obtained previously, for each Tr time interval.

2) Refine all previous paths that have been previously
found at step I.4.a by reconstructing the entire possible
journeys not just by using distance between stops and
maximum speed, but information from real time-table
scheduling, total number of transfers between each
train segments, waiting time, etc. This step represents
a further enhancement and refinement of Table II by
adding more features of each possible route such as:

a) real travel time of the entire journey from origin
to destination extracted from train GTFS data
specifications; let’s denote this as ttGT

i, j ; the vector
of all travel times of all possible paths from from
station i to any station j will now be based on

real time-table scheduling, and we denote it as
~T T

GT
Si

,
b) the recorded transfer time between platforms in

each transfer station along the route, denoted as:
T F~ri, j by taking into consideration the synchroni-
sation between the arrival of a train from origin
station (Si) to a transfer station (Str

k ), and the
scheduled departure or the interconnecting trains
from Str

k to the final destination S j.
c) the waiting time which is determined from the

tap-on time of passengers every minute until de
departure of the next scheduled train trip which
we denote as WT~ri, j .

3) Based on the previous measures defined above, for
each possible routes between two stations we now
define two different possibilities of calculating the
estimated time-off for a trip, by further adjusting Eq.1
to take one of the following forms:

EA
To f f

(~ri, j) = T d~ri, j +WT~ri, j + ttGT
i, j (8)

EB
To f f

(~ri, j) = T d~ri, j +WT~ri, j + ttGT
i, j +T F~ri, j (9)

4) rank all possible routes (paths) from shortest to longest,
which are obtained for each of the cases above (A,B)
proposed above. Each solution will provide different
paths/routes as being the preferred ones and these will be
evaluated using various performance metric criteria detailed
in the last step of this procedure.

5) for each EA
To f f

, EB
To f f

, identify the 15-min time interval in
which the trip will finish, noted as TrA, TrB, where r ∈
{1...96} as stated before.

6) By using initial aggregated Tap-off information sampled over
15-min time intervals, we calculate the total number of
passengers ending their trips in each of the TrA, TrB time
interval, at each station of the STM network by using:

SSi
to f f−c(TrA) =

N

∑
i=1

N pSi
To f f

(TrA) (10)

SSi
to f f−c(TrB) =

N

∑
i=1

N pSi
To f f

(TrB) (11)

7) For each route ending in a specific time interval TrA, TrB, we
further calculate the weight associated this route, by using
the following equations:

w~ri, j (TrA) =
N pSi

To f f
(TrA)

SSi
to f f−c(TrA)

(12)

w~ri, j (TrB) =
N pSi

To f f
(TrB)

SSi
to f f−c(TrB)

(13)

which satisfy the conditions that:

∑w~ri, j (TrA) = 1 (14)

∑w~ri, j (TrB) = 1 (15)

8) Finally, by using Eq. (14)-Eq. (15), we calculate the recali-
brated number of assigned passengers tapping-off per time-
interval as an expression of the total number of passengers
entering the stations and their associated exiting weights:

N pSi,S j
To f f−c

(TrA) = w~ri, j (TrA) ·N pSi,
Ton

(T d~ri, j ) (16)

N pSi,S j
To f f−c

(TrB) = w~ri, j (TrB) ·N pSi,
Ton

(T d~ri, j ) (17)



9) In order to evaluate the effectiveness of each case (A,B), we
compute various key performance indicators, by comparing
results from Eq. (16)-Eq. (17) to original sampled tap-off
passengers information:

R2
A = 1−

∑
N
i=1

(
N pSi,S j

To f f−i
(TrA)−N pSi,S j

To f f−c
(TrA)

)2

∑
N
i=1

(
N pSi,S j

To f f−i
(TrA)− 1

N ∑
N
i=1 N pSi,S j

To f f−c
(TrA)

)2

RMSEA =

√√√√ 1
N

N

∑
i=1

(
N pSi,S j

To f f−i
(TrA)−N pSi,S j

To f f−c
(TrA)

)2

SMAPEA =
100%

N

N

∑
i=1

2 ·
∣∣∣N pSi,S j

To f f−i
(TrA)−N pSi,S j

To f f−c
(TrA)

∣∣∣∣∣∣N pSi,S j
To f f−i

(TrA)
∣∣∣+ ∣∣∣N pSi,S j

To f f−c
(TrA)

∣∣∣
Similarly, we calculate R2

B, RMSEB and SMAPEB. Based on
final comparison between the performance of each approach,
we will choose the best method achieving minimal results
on all/most of the metrics. This approach will be the one
defining the final calculation of the recalibrated OD matrix
as presented in the next and final step.

10) Finally, we compute the recalibrated time-dependent OD
matrix of assigned number of passengers departing from any
station in the network as follows:

ODc(Tr−c) =
[
N pSi,S j

To f f−c
(Tr−c)

]
i, j∈{1,..,N}

(18)

where Tr−c ∈ {TrA,TrB} and is chosen based on final assess-
ment from previous step.

C. Platform passenger assignment

As previously mentioned, the known variables that we
have for each train stations are the total number of pas-
sengers tapping on and off at the main entrance in each
station, together with the recalibrated numbers of passengers
travelling between any two stations. However, this provides
an overview of the train network performance and does not
reflect the total number of passengers assigned to each train
and each platform arriving/departing to/from a stations Si,
which would provide a higher level of granularity and in-
sight regarding the overall train performance and passengers
assignment across the entire train service.

Fig. 2 represents the modelling of passenger arriving
and departing from a train station which contains several
platforms, and for which the total number of passengers is
known between specific time intervals. Table IV presents the
notations used in this subsection which are detailed in the
following as well.

TABLE IV: Notations in use for platform assignment.

Variable Definition
M number of platforms of a station Si,
R daily number of train trips arriving at a station Si,
N pinSi (t) number of passengers inside a station Si at time t,

including those transferring, waiting and remaining in train,
N pSi

ak (t),k ∈ 1, ..M number of passengers arriving at a platform k
belonging to a station Si at time t,

t +∆tr scheduled departure time of a train trip r ∈ {1,R}
N pSi

dk
(t +∆tr),k ∈ 1, ..M number of passengers departing from a platform k

belonging to a station Si after a scheduled departure time,
T r

tripID(t) the scheduled train trip ID arriving at Si at time t,
T r

tripID(t +∆tr) the scheduled train trip ID departing from Si at time t +∆tr

NpSia2(t) ... NpSiaM (t) NpSid1(t +∆ t1) NpSid2(t +∆ t2) ... NpSidM (t+∆ tR)

Si N
inSi
p (t) = |NpSiton(t)−NpSitof f (t)|

NpSia1(t)

NpSiton(t)NpSitof f (t)

T1
tripI D (t)

...

T2
tripI D (t)

...
TR
tripI D (t)

T1
tripI D (t+∆ t1)

TR
tripI D (t+∆ tR)

...T2
tripI D (t+∆ t2) ...

Fig. 2: Modelling schema of passengers arriving/departing from
train stations.

We first start by describing the total number of passengers
inside a station Si at time t, including those transferring,
waiting and remaining in train as:

N pinSi(t) =
∣∣∣N pSi

To f f
(t)−N pSi

Ton
(t)
∣∣∣ (19)

where N pSi
To f f

(t) is expressed as the total number of persons arriving
at platform k of station Si at time t from various trains and heading
towards the exit:

N pSi
To f f

(t) =
M

∑
k=1

N pSi
ak
(t) (20)

and N pSi
Ton

(t) becomes the total number of persons entering the
station Si and heading to departing from one of the platforms k at
time (t +∆tr):

N pSi
To f f

(t) =
M

∑
k=1

N pSi
dk
(t +∆tr),r ∈ 1,R. (21)

These arrival/departing number of passengers are represented
with red/blue arrows respectively in Fig. 2, which we will further
identify as a hybrid Markov Chain model (HMCM) due to the dual
continuous-discrete behaviour (continuous variables of passengers
and discrete state representing each platform at a specific time).
As an observation, we could have represented the states of arrival
and departing from platforms as single states, described by two
continuous-time variables (number of passengers arriving/departing
at each platforms) and returning arcs for those staying on the same
platform after getting off, but we wanted a clear separation of
automata modelling based on train arrival/departing at each train
platform, during a specific time interval ∆tr,r ∈ {1,R}.

By continuing our analysis we further express N pSi
ak (t),k ∈

{1, ..M} as:

N pSi
ak
(t) = N pexit−Si

ak
(t)−N premain−Si

ak
(t)+N ptrans f er−Si

ak (t) (22)

where N premain−Si
ak (t) is the total number of passengers remaining

in the same train which can be expressed as:

N premain−Si
ak

(t) = N pSi
ak−>dk

(t +∆tk) (23)

and N ptrans f er−Si
ak (t) represents the total number of passengers

randomly transferring from platform ak to other platforms of
departure dt , after a specific time interval ∆tr,r ∈ {1, ..R} (all
transfers possible from current platform):

N ptrans f er−Si
ak (t) =N pSi

a1−>d2
(t+∆t2)+ ...N pSi

a1−>dM
(t+∆tM) (24)



Fig. 3: Heat Map for selected stations as a) initial OD at 8AM, b)initial OD at 12PM, c) initial OD at 5PM, d) calibrated OD at 8AM,
e) calibrated OD at 12PM and f) calibrated OD at 5PM.

Similarly, we express N pSi
dk
(t +∆tr) as:

(25)
N pSi

dk
(t + ∆tr) = N penter−Si

dk
(t + ∆tr)− N premain−Si

dk
(t + ∆tr)

+ N ptrans f er−Si
dk

(t + ∆tr).

where N premain−Si
dk

(t + ∆tr) is the total number of passen-
gers remaining in the same train (not changing platforms and
N ptrans f er−Si

dk
(t + ∆tr) is the total number of passengers arriving

at platform dk for departure at time interval (t +∆tr) (all transfers
possible to a current platform); similarly, these are expressed as:

N premain−Si
dk

(t +∆tr) = N pSi
ak−>dk

(t +∆tk) (26)

(27)
N ptrans f er−Si

dk
(t + ∆tr) = N pSi

a1−>d2
(t + ∆t2)

+ ...N pSi
a1−>dk−1

(t + ∆tk−1)

where
t +∆tk−1 ≤ t +∆tk,etc. (28)

We make the observations that we can model the transitions
between various platforms of station, by taking into considerations
the transition probability matrix of the HMCM which need to satisfy
the conditions across the above transition probabilities as follows:

Pr(N pSi
a1−>d2

(t +∆t2))+ ...Pr(N pSi
a1−>dM

(t +∆tM)) = 1

Pr(N pSi
a1−>d2

(t +∆t2))+ ...Pr(N pSi
a1−>dk−1

(t +∆tk−1)) = 1.

III. CASE STUDY

As shown in Fig. 1, our study has been applied over the Sydney
train network in Australia. The entire train network expands over
various states in Australia, but for the purpose of keeping the
analysis concise, we only focus on the New South Wales and most
specifically on the Sydney region which contains in total over 175
train stations with a total of 506 platforms.

A. Results
OD estimation: Firstly we followed the method detailed in

Section II-A to estimate an initial OD matrix based on tap-on/tap-
off data which contains 175x175x24x4=2.94 million OD pairs. The
OD matrix covers every 15-min of time window from 00:00:00AM
to 24:00:00AM and each pair represents the number of passengers
travelling from one Origin Station to a Destination Station departing
within a 15-min time interval. We run the OD estimation algorithm
(multiple threads) on a machine with Intel i7 CPU and 16GB
RAM which took almost 10 hours in terms of computational time.
The considerable time cost is mainly due to the path routing
computation. The error of initially estimated OD matrix is around
13.6% calculated by using Eq. (6) which will be further reduced
after applying the calibration in next step. To illustrate the OD
matrix, Fig. 3 (a), (b) and (c) show a selection of OD matrix heat
maps for the selected stations at 08:00AM, 12:00PM and 17:00PM
respectively. The 11 selected stations consists of 3 major stations in
Sydney CBD and 8 interchange stations outside CBD. We observe
that already the OD matrix heat maps disclose a pattern that in the
morning peak hours passengers are travelling from other stations
outside Sydney CBD to the main Central station, Town Hall station
and Wynyard station, whereas in the afternoon peak hours they are
travelling from CBD to other areas. Due to lack of space in this
paper we further provide three sample representations of the entire
175x175 OD matrices in the online supplement material provided
at [1, Fig. 9 a, b, c] which showcase overall traffic patterns across
the entire train network in the city.

TABLE V: Performance metrics of calibration approaches A,B

Calibration Approach R2 RMSE SMAPE

A 0.8611 75.84 33.51%

B 0.8604 62.39 32.09%

OD calibration: After obtaining the initial OD matrix, we
calibrated it using the proposed calibration schemas A and B,
detailed in Section II-B. Their effectiveness is evaluated using R2,



Fig. 4: Coefficient of determination of calibrated OD matrix for
approach a) A and b) B.

RMSE and SMAPE which are shown in Table V. The performance
of each approach seems to be very effective (R2 > 0.85, a low
RMSE < 80 and good SMAPE thresholds below 35%) with an
evident improvement when applying method B; this indicates that
for our case study in Sydney, including the waiting time in the
route choice estimation will improve considerably the performance
of the train passenger assignment by almost 17% (RMSE is reduced
to 62.39 from 75.84).

Further more, Fig. 4, Fig. 5 and Fig. 6 illustrate the R2 distri-
bution and box-plot performance of each train station (in terms of
RMSE and SMAPE) after the calibration. The R2 of recalibrated
OD versus the initial one indicates a large number of passengers
falling under the threshold of 2,000 passengers per 15-min time
interval with few outliers reaching 10,000− 11,000 passengers
across highly circulated CBD train stations during peak hours.
There are however no missing information or large number of
small outliers being detected after the calibration procedure which
reinforces the method efficiency. RMSE values indicate very good
accuracy (majority fall below 100) for both A and B approaches.
Similarly SMAPE values maintain strong records below 25% across
majority of stations, including the busiest ones, for approach A, and
below 20% for approach B. Epping Station is the one showcasing
the highest variance of the SMAPE values, mostly due to the
interchange nature of the station receiving high speed trains from
cities located at North of Sydney.

Similarly, the heat maps of calibrated OD Matrix for 11 selected
stations on 08:00AM, 12:00PM and 17:00PM are presented in
Fig. 3 (d), (e) and (f) respectively revealing a slight re-distribution
of passenger across Central station, Parramatta (in the west of
the city) and Epping (to the North). Afternoon peak seem to the
busiest across Town Hall, Central and Wynyard stations (inside
CBD) maintaining the same trends as before. The entire recalibrated
matrices can also be found in the online supplement at [1, Fig. 9
d, e, f] which reveal more pregnant morning and afternoon peak
patterns across several stations in the network.

Platform passenger assignment: was lastly conducted for the
entire network. Fig. 8 and Fig. 7 show the number of passengers in
Central station and Town Hall station on 08:00AM, 12:00PM and
17:00PM respectively.

Both figures showcase the time-dependent evolution of: a) off
board passengers arriving at each station and going towards the
exit (as per Eq. (22)), b) the onboard passengers departing after
entering the station (as per Eq. (25)) as well as the number of
passenger transferring in and out of platforms (as per Eq. (24) and
Eq. (27) respectively).

The passenger assignment results demonstrate a consistent pat-
tern with the above OD matrix heat maps. There are more passen-
gers entering in both Central station and Town Hall station in the
morning peak hours than the afternoon peak hours and the reverse
applies. It also can be observed that the number of passengers
transferring between platforms in the two stations are significant
and it is comparable with the number of passengers entering and
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Fig. 5: RMSE values for selected stations for approach a) A and
b) B.
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Fig. 6: SMAPE values for selected stations for approach a) A and
b) B.

Fig. 7: Platform Passenger Assignment for Town Hall station.



Fig. 8: Platform passenger assignment for Central station by each time interval, and a selected number of platforms (to fit the chart).

existing the stations, which implies that both stations are very
circulated transport hubs. The passenger assignment can reveal large
amounts of activities inside stations other than station tap-on/tap-off
activities, which is helpful for understanding station performances
and improving situation awareness. The current methodology and
analysis provide as well a powerful insight into the implications of
train disruptions and load impact across platforms, and the entire
stations in general.

IV. CONCLUSION

This paper studied the train demand estimation and public
transport passenger assignment problem, which are critical steps
for any public transport management centres. To address these
problems, we proposed a three-step modelling approach leading
to the final estimation of train occupancy. The results are carried
in a case study focusing on the entire Sydney region train network.
The main contributions of this work consist of:
• a method for estimating the initial time-dependent OD matrix

under data constraint circumstance,
• a method for calibrating the initial OD matrix using real-time

train scheduling data,
• a method for platform passenger assignment to quantify pas-

senger flow at platform level of granularity, and
• an application case study on a large scale train network in a

real-life setting which adds up to almost 2.94 million of time-
dependent OD pairs; this implies significant computational
challenges and scalability which the current approach has
demonstrated.

Future extensions of the current work include: a) showcasing
the performance of the method on a high variety of train paths
across the network before/after the calibration, b) considering more
accurate real-time information such as train delay and modelling the
impact of this delay on daily commuters and finally c) embedding
the impact of large disruptions across the entire train network
in order to estimate the most crowded platforms of each train
stations pending on interconnection train lines. We are looking at
further using mobile data for train passenger assignment refinement
and validation. This however raises complexities in terms of geo-
location, aggregation of passengers movement inside/outside of
trains stations, etc.
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